韩国科学家研究发现二氧化硅可用于锂硫电池

在过去的几十年里,移动技术、可穿戴电子产品和各种便携式设备的使用量急剧增加,促使全世界的科学家们寻求可充电电池的下一个突破。锂硫电池(LSBs)是由浸没在液态电解液中的硫基正极和锂阳极组成的,因其成本低、无毒且富含硫的特性,有望取代无处不在的锂离子电池。

然而,鉴于如下两个原因,在电池中使用硫是存在一定挑战的的。首先,在放电循环过程中,可溶性锂多硫化物(LiPS)在正极形成,扩散到电解液中,很容易到达阳极,在那里它们会逐渐降低电池的容量。其次,硫是不导电的。因此,需要一种导电、多孔的主体材料来容纳硫,同时在阴极捕获LiPS。近来,由于碳基主体结构具有导电性,因此人们对碳基主体结构进行了探索。然而,碳基主体不能捕集LiPS。

在最近发表在《AdvancedEnergyMaterials》杂志上的一项研究中,来自大邱庆北科学技术研究所的科学家们提出了一种名为板状有序介孔二氧化硅(pOMS)的新型主体结构。他们选择的不寻常之处在于,二氧化硅这种低成本的金属氧化物实际上是不导电的。然而,二氧化硅具有很强的极性,会吸引其他极性分子,如LiPS等。

在向pOMS结构施加导电碳基剂后,结构孔隙中的初始固体硫会溶解到电解液中,然后从那里扩散到导电碳基剂中,被还原生成LiPS。在这种方式下,尽管二氧化硅不导电,但硫有效地参与了必要的电化学反应。同时,pOMS的极性保证了LiPS保持在靠近阴极而远离阳极的位置。

科学家们还构建了一个类似的非极性、高导电性的传统多孔碳母体结构,与pOMS结构进行对比实验。领导这项研究的Jong-SungYu教授表示:采用碳母体的电池表现出很高的初始容量,但由于非极性碳和LiPS之间的微弱相互作用,容量很快就会下降。在连续循环过程中,二氧化硅结构显然保留了更多的硫;这导致了高达次循环的容量保持和稳定性大大提高。

从这项研究中得到的最重要的启示是,LSB的主体结构不需要像以前认为的那样具有导电性。Yu教授说:我们的研究结果令人惊讶,因为没有人想到非导电的二氧化硅可以成为一种高效的硫主体,甚至超过了最先进的碳主体。这项研究拓宽了LSB的主体材料的选择范围,并可能导致下一代硫电池的范式转变。

论文标题为《RevisitingtheRoleofConductivityandPolarityofHostMaterialsforLongLifeLithium–SulfurBattery》。




转载请注明:http://www.180woai.com/qfhqj/8467.html


冀ICP备2021022604号-10

当前时间: