锗化硅材料导电特性的综述
摘要:从Si材料到化合物半导体再到SiGe,微电子领域应用对材料提出了很高的要求,而这些材料却具有不断优化的性能,SiGe在高速发射和集成方面有很大的进步,SiGe-HBT等新技术的实验与开发为新材料带来了非常大的应用空间。
1引言
随着半导体材料的发展和生产工艺的发展,对于半导体材料的性能要求越来越高,领域内产品的开发和人们的需求对于半导体材料在其电学特性上的要求也越来越高。在微电子领域,30多年以来,Si一直是半导体工业中占绝对优势的半导体材料。尽管最早采用的是Ge,并且其他某些半导体材料也许具有较高的载流子迁移率、较大的载流子饱和漂移速度和较宽的禁带宽度,但由于Si的许多优良特性,利用Si能够实现最廉价的集成电路工艺,所以在整个微电子技术中,Si器件的应用超过了97%。
然而不同的半导体材料具有不同的电学特性,也具有针对不同需求的应用功能。在此同时,还诞生了很多新型半导体材料,比如SiC、SiGe,这些化合物半导体融合了元素半导体的强项性能,在微电子领域有更好的应用。本文介绍的是SiGe材料的导电特性,分别从理论和实验应用方面展开论述。
2理论研究和实验研究
2.1理论研究
虽然现在Si在微电子技术中占据着主导地位,但是由于其载流子的迁移率和饱和漂移速度较低,而且具有间接跃迁能带结构,限制了它在若干方面的应用。因此,在许多模拟电子技术领域,特别是在高频、高速方面(例如射频功率放大器和激光器),往往是GaAs、InP等化合物半导体起主要作用。然而化合物半导体技术难以大规模集成,同时,加工不便、成本较高,所以人们还是希望从Si技术中寻找出适应高频、高速需要的新技术。最早由IBM提出的SiGe技术在很大程度上满足了这种需求。SiGe技术由于能够在Si片上通过能带工程和应变工程改善Si的性能,同时又能够采用成熟和廉价的Si工艺技术来加工,所以受到人们的极大